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Boolean networks are used to study the large-scale properties of nonlinear systems and are mainly applied
to model genetic regulatory networks. A statistical method called the annealed approximation is commonly
used to examine the dynamical properties of randomly generated Boolean networks that are created with
selected statistical features. However, in the literature there are several variations of the annealed approxima-
tion. These approximations cannot be interchangeably used in all cases due to different background assump-
tions. In this paper, we present the so-called four-state model, derive the different approximations from this
model, and make the differences and connections between these approximations explicit. As an application of
the presented results, we study the properties of the Boolean networks that are constructed with random
functions, canalizing functions, and regulatory functions found in the biological literature.
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I. INTRODUCTION

Kauffman originally introduced Boolean networks as
simple models for large dimensional, nonlinear, and dynami-
cal systems such as gene regulatory networks �1,2�. He ob-
served that large randomly generated Boolean networks with
suitable parameters can give rise to surprisingly ordered sys-
tems with a small set of states in which the system will end
up. These final states constitute dynamical attractors that can
be interpreted as cell types of an organism.

In addition to the attractors, we can study the dynamics of
Boolean networks on a general level by examining the
propagation of perturbations �3�. If small perturbations tend
to die out, the networks are called ordered. If small pertur-
bations have on average large effects on the system state, the
networks are called chaotic. The intermediate case where
perturbations retain on average their size is called critical.
Recently, there has been evidence that real gene regulatory
networks may have critical dynamics �4,5�.

A significant breakthrough in the analysis of Boolean net-
work dynamics has been the introduction of the so-called
annealed approximation �6,7�. This statistical mean-field ap-
proximation allows the prediction of network dynamics for a
given distribution of network update rules. The predictive
information of the approximation can be given in the form of
an iterative map that predicts the perturbation size at time
t+1 given the perturbation size at time t. This approximation
and other equivalent ones have been used for several differ-
ent kinds of update functions �8,9�.

However, the mapping as originally given does not per-
form well for all distributions of update functions. In particu-
lar, the original annealed approximation can classify as cha-
otic ordered networks that have many canalizing functions.
Canalizing functions are interesting since they have been
suggested as a candidate mechanism for order in networks
with high connectivity �10�. In order to make the annealed
approximation more accurate, we need to take into account
the so-called forcing effect. Moreira et al. �11� studied net-

works with canalizing functions using a particular annealed
approximation that takes the forcing effect into account. Kes-
seli et al. �12� proposed a slightly different version.

In this paper, we clearly show the connections and differ-
ences between the above-mentioned and the original an-
nealed approximations by using a general model. We derive
all three approximations as special cases of this model. In
addition to being theoretically interesting, the model based
on iterative maps could also be used as a more general ap-
proximation of Boolean network dynamics.

II. BASIC PROPERTIES OF BOOLEAN NETWORKS

A Boolean network is a directed graph with N nodes.
Nodes represent, for example, genes, and graph arcs repre-
sent biochemical interactions between the genes. The in-
degree of a node is the number of incoming connections to
the node, and the out-degree is the number of outgoing con-
nections. We denote the distribution of node in-degrees k as
pk and the expected in-degree as �pk�. Each node is assigned
a binary-state variable and a Boolean function as an update
rule. The inputs of each update rule are assigned according to
the graph connections. The value 1 of the state represents an
active gene, while the value 0 represents a nonactive gene.
The Boolean function f associated with the node represents
the biochemical rule of regulatory interactions affecting the
gene in question. Boolean functions can be presented in truth
table format. For example, f = �00111000� refers to the func-
tion f with three input variables x1, x2, and x3:

x1 x2 x3 f�x�

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 0
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We denote the distribution over the set of functions in the
network as F and the distribution of functions with given
in-degree k as Fk. The in-degree and function distributions
are connected in such a way that the degree distribution of
the function distribution matches the network in-degree dis-
tribution. The state of the network is the vector of the state
variable values of all the nodes at a given time instant. The
network nodes are updated synchronously.

In our analysis, we use the annealed approximation. This
means that we let the network size N approach infinity and
shuffle the network connections and functions after every
time step. In addition, we assume that the network topology
is random; i.e., the inputs to a node are chosen randomly
among all other nodes. The approximations of annealed dy-
namics and random topology allow us to use simple proba-
bilistic methods to analyze the dynamical behavior of the
network. Of course, real gene regulatory networks cannot be
expected to have a random topology. Further research is
needed to understand the dynamical behavior of Boolean
networks with more realistic topological properties. We refer
to finite-size Boolean networks with fixed connections and
functions as quenched Boolean networks.

In a deterministic system with a finite state space any
trajectory will ultimately come back to a state visited earlier
and start repeating a sequence of states called an attractor. In
practice, one of the main differences between quenched and
annealed networks is the absence of attractors in the latter.
The properties of attractors have been widely studied in the
literature �13,14�.

Biological observations have suggested that the in-degree
distribution of real gene regulatory networks may be close to
the Poisson distribution �15�

pk =
Kk

k!
e−K.

Here, K is the distribution parameter. For a Poisson distribu-
tion �pk�=K. Other studies suggest that the in-degree distri-
bution might be a power law �16� of the form

pk =
1

����
k−�, p0 = 1 −

����
��� − 1�

.

Here, � is the distribution parameter and ���� is the Riemann
zeta function. For a power-law distribution the average in-
degree is

�pk� =
��� − 1�

����
.

Let us now consider the probability that a node has value 1 if
we know this probability in the previous time step in the
annealed network. We call this mapping g�b� the bias map of
the function distribution. The mapping is given by

g�b� = E
f�F� �

x�	0,1
Kf

f�x�P�x�b�� ,

where

P�x�b� = b�x��1 − b�Kf−�x�

is the probability for any fixed input vector x� 	0,1
Kf, given
that we know the probability b for an arbitrary element of the
input vector to have value 1. Here, Kf is the in-degree of the
function f that is drawn from a desired function distribution
F and �x� is the number of 1’s in the vector x. The bias map
can be iterated by

bt+1 = g�bt� .

This mapping may have nontrivial fixed-point solutions de-
pending on the chosen function distribution �17–20�. How-
ever, it can be assumed that all biologically realistic function
distributions finally reach a unique stable fixed point b*

=g�b*� �17�. If this is not the case, many results in this paper
do not apply directly. The derivative of the bias map is

g��b� = E
f�F
� �

x�	0,1
Kf

f�x�
�x� − Kfb

b�1 − b�
P�x�b�� .

The average influence of a function is the probability that the
function changes its output if we flip the value of an input. In
addition, we assume that an input has value 1 with probabil-
ity b. For a function distribution the average influence I�b� is

I�b� = E
f�F
� 1

Kf
�
i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��P�x�b�� .

Here, � refers to an XOR operator and ei is the unit vector of
length Kf with �ei�=1 and value 1 in the ith position. Note
that the middle part of the equation can be expressed also
with a Boolean derivative:

�f�x�
�xi

= f�x� � f�x � ei� .

We define the average influence I of the function distribution
F at the bias-map fixed point b* as

I = I�b*� .

The average influence I can be considered as the average
probability that an arbitrary arc is propagating a perturbation
at the bias-map fixed-point state. The influence of the ith
component of the input vector x is defined as

Ii�b� = �
x�	0,1
Kf

�f�x� � f�x � ei��P�x�b� .

The average sensitivity of a Boolean function is the sum of
the influences Ii�b�. The average sensitivity of a function
distribution is given by

��b� = E
f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��P�x�b�� .

By using the average sensitivity at the bias-map fixed point
we can define the network’s order parameter as

� = ��b*� .

The order parameter � is the average amount of nodes that
are perturbed one time step after we have flipped the value of
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a randomly chosen node, given that the network has reached
the bias-map fixed point before the perturbation. Networks
with ��1 are stable, networks with �=1 are critical, and
networks with ��1 are chaotic. The average sensitivity �� 1

2
�

has been previously used as a measure of dynamical behav-
ior �9�. As will be confirmed by the Derrida maps derived in
Sec. III, this measure is not generally suitable when study-
ing, for example, canalizing functions.

In some applications we need to divide the parameter ��b�
into two parts �C�b� and �I�b�. These parts correspond to the
average amount of nodes that copy or invert the value of the
perturbed node:

�C�b� = E
f�F
��

i=1

Kf

�
x�	0,1
Kf

	�1 − xi��1 − f�x��f�x � ei�

+ xif�x��1 − f�x � ei��
P�x�b�� ,

�I�b� = E
f�F
��

i=1

Kf

�
x�	0,1
Kf

	�1 − xi�f�x��1 − f�x � ei��

+ xi�1 − f�x��f�x � ei�
P�x�b�� .

It can be noted that

��b� = �C�b� + �I�b� .

We define �C and �I at the bias-map fixed point as

�C = �C�b*�, �I = �I�b*� .

We define ���b� as the difference between �C�b� and �I�b�:

���b� = �C�b� − �I�b� .

Note that ���b� is the derivative of the bias map at b:

���b� = g��b� .

The proof is given in the Appendix. It follows that �� at the
bias-map fixed point can be given simply as

�� = g��b*� .

It has been found that the parameter �� is important, for
example, in determining the number of attractors and their
lengths in quenched Boolean networks �13�.

III. DERRIDA MAPS

Let us consider the situation where we have two annealed
networks running in parallel; see Fig. 1. Network 1 repre-
sents the network without a perturbation. Instead, in network
2 a certain fraction of the nodes is perturbed �the node values
are opposite to those of network 1�. Both networks have the
same functions and connections at each time step. Each pair
of nodes may have four different combinations of values �00,
01, 10, and 11�. For example, we can now define p00�t� as the
probability that at time t a randomly selected node has value

0 in both networks. Corresponding definitions can be given
for all the combinations. The probabilities p00, p01, p10, and
p11 can be updated according to the following maps:

p00�t + 1� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

�1 − f�x���1

− f�y��P�x,y,t�� ,

p01�t + 1� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

�1 − f�x��f�y�P�x,y,t�� ,

p10�t + 1� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

f�x��1 − f�y��P�x,y,t�� ,

p11�t + 1� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

f�x�f�y�P�x,y,t�� ,

where

P�x,y,t� = p00�t��1 − x�T�1−y�p01�t��1 − x�Typ10�t�xT�1−y�p11�t�xTy .

The sum of these probabilities naturally adds up to
1—i.e., p00+ p01+ p10+ p11=1. For this reason, three of the
above iterative mappings are needed to completely describe
the annealed model. We call this model of network dynamics
the four-state model. We define b1 as the probability that a
node has value 1 in annealed network 1 and b2 as the prob-
ability that a node has value 1 in annealed network 2 at time
t. 	 is the probability that a pair of nodes has different values.
In other words, the proportion of perturbed nodes 	 is the
perturbation size in the network. We find that the connections
between these probabilities are

b1 = p10 + p11,

b2 = p01 + p11,

FIG. 1. An illustration of the model where two annealed net-
works run in parallel. Highlighted nodes represent nodes that are
perturbed.
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	 = p10 + p01,

and conversely,

p00 = 1 −
1

2
�b1 + b2 + 	� ,

p01 =
1

2
�b2 − b1 + 	� ,

p10 =
1

2
�b1 − b2 + 	� ,

p11 =
1

2
�b1 + b2 − 	� .

It is usually more illustrative to use b1, b2, and 	 instead of
the probabilities pij. Derrida maps have been commonly used
to depict the propagation of perturbations in the network �6�:

h�	� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

�f�x� � f�y��P�x,y,t�� .

We are interested in the fixed point 	*=h�	*� of the Derrida
map. If 	*=0, the network is stable because all perturbations
eventually die out. If 	*�0, the network is chaotic because
small enough differences in state will always be amplified
according to the approximation. Since the Derrida maps are
one dimensional, some information about the dynamical be-
havior of the four-state model that needs three iterative map-
pings must be omitted. In particular, we assume that the bias
map has a unique stable fixed point for the given function
distribution. In the most commonly used definition, the net-
work biases b1 and b2 are chosen to be 1/2, meaning that the
perturbations are studied in states selected randomly with
equal probability for all the possible states. Using this as-
sumption we get h1�	� as

h1�	� = E
f�F
� �

x�	0,1
Kf

�
y�	0,1
Kf

�f�x� � f�y��1

2
−

1

2
	�Kf−�x�y�


1

2
	��x�y�� .

The Derrida map h1�	� does not give correct estimates for
the fixed point 	*, because the effects caused by the change
of network bias are not taken into account. As the second
case, we choose the initial state so that a node has value 1
with probability b* and let the perturbed state have the aver-
age perturbed bias—i.e., b1=b* and b2=b*−2b*	+	. Using
this assumption we get h2�	� as

h2�	� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

�f�x� � f�y�� 
 ¯


 �1 − b* + b*	 − 	��1 − x�T�1−y��b* − b*	�xTy�	

− b*	��1 − x�Ty�b*	�xT�1−y�� .

This expression can be simplified as

h2�	� = E
f�F
��

k=1

Kf

�k	
k�1 − 	�Kf−k� , �1�

where

�k = �
x�	0,1
Kf

�
y�Pk

�f�x� � f�x � y��P�x�b*�

is the average sensitivity of the function f over k variables.
�k is also called the generalized sensitivity in �21�. Here, Pk
refers to the set of all vectors y� 	0,1
Kf with �y�=k. The
proof for this result is in the Appendix. This definition for the
Derrida map has been used, for example, by Moreira et al.
�11�. The fixed point 	* of the map is not correct because the
second annealed network will not stay at the initial bias
value given by the definition. In the special case of b*=0 we
note that this Derrida map is the same as the bias map

h2�	� = g�	� . �2�

The proof is given in the Appendix. As a third option, we
assume that b1=b2=b*. In other words, we only make such
perturbations that lead to the same bias for the second an-
nealed network. The Derrida map h3�	� is

h3�	� = E
f�F
� �

x�	0,1
Kf

�
y�	0,1
Kf

�f�x� � f�y��


1 − b* −
1

2
	��1 − x�T�1−y�b* −

1

2
	�xTy1

2
	��x�y�� .

This map was presented in �12� in an alternative form. The
fixed point 	* is correctly given by the Derrida map h3�	�
because at the fixed point 	* both annealed networks have
also reached their bias-map fixed points b1=b2=b*. How-
ever, by using this definition, the maximum perturbation size
that can be drawn is min�2b* ,2−2b*�. This clearly discour-
ages the use of h3�	� as a general one-dimensional map for
predicting perturbation propagation. However, h3�	� can be
used for visualization purposes. The slope of the Derrida
map at the origin is often used as an order parameter for
Boolean networks. We find that

h1��0� = �1

2
� . �3�

The slopes at the origin for h2 and h3 Derrida maps are

h2��0� = h3��0� = � . �4�

Proofs of these results are in the Appendix. As confirmed by
these observations, Derrida maps cannot give a complete de-
scription of the propagation of large perturbations in an-
nealed Boolean networks. However, Derrida maps can still
be used for visualization or other specific purposes when the
limitations are taken into account.

IV. APPLICATIONS FOR RANDOM AND CANALIZING
FUNCTIONS

In the context of Boolean and gene regulatory networks,
two types of function distributions are of particular interest.

KESSELI, RÄMÖ, AND YLI-HARJA PHYSICAL REVIEW E 74, 046104 �2006�

046104-4



These are distributions of random functions and distributions
with canalizing functions. We define the distribution of ran-
dom functions with the parameter p that is the probability
that an arbitrary entry in the truth table of the function is 1.
Different networks can also be obtained by changing the dis-
tribution of in-degrees pk.

The bias map for random functions is constant:

g�b� = p . �5�

It follows that the bias-map fixed point b*= p and ��=0. It
can be seen that

��b� = 2p�1 − p��pk� . �6�

Therefore, the order parameter �=2p�1− p��pk�. We find that
the Derrida maps h1�	�, h2�	�, and h3�	� are all equal for
random functions and are given by

h�	� = 2p�1 − p��
k=1

�

pk�1 − �1 − 	�k� . �7�

Proofs of these results can be found in the Appendix. We
note that the form of the Derrida map depends not only on
the average in-degree but also on the in-degree distribution.
However, the slope of the map at the origin depends only on
the average in-degree. With a straightforward application of
the above, we find that the Derrida map for networks with a
Poisson in-degree distribution and random functions is

h�	� = 2p�1 − p��1 − e−K	� ,

while the Derrida map for networks with a scale-free in-
degree distribution and random functions is

h�	� = p�1 − p��1 − ����Li��1 − 	�� ,

where Li��z� is the polylogarithm function:

Li��z� = �
k=1

�
zk

k� .

We numerically tested how the in-degree distribution can
change the form of the Derrida map with random functions
�p=0.5�. First, we used a typical random Boolean network
with constant in-degree 2. Second, we used a network where
a node has in-degree 4 with probability 1 /2 and in-degree 0
with probability 1 /2. This network also has average in-
degree 2. Figure 2 shows the numerical and analytical Der-
rida maps for this test. We find that the tail of the Derrida
map is considerably lower for the second test case.

Canalizing functions are a class of functions of particular
interest �22�. A Boolean function f is canalizing if there is a
canalizing variable xi, i�1,2 , . . ., Kf, and s, v� 	0,1
 such
that

∀ x � 	0,1
Kf:xi = s ⇒ f�x� = v .

Here, s is called the canalizing value and v the canalized
value. For simplicity we refer to canalizing functions as
�s→v�-canalizing functions. We choose a parametrized dis-
tribution of canalizing functions and study the annealed dy-
namics of the networks generated with this distribution. All
the functions of this distribution have at least one canalizing

input, and this input has canalizing value 1 with probability
p1. The canalized value of the function is 1 with probability
p2. For those values in the truth table that are not determined
by this canalizing input we select a random value with bias
p3; i.e., the random value is 1 with probability p3. Note that
the distribution is not limited to functions with a single cana-
lizing input. The amount of functions with several canalizing
inputs is influenced by the parameter p3. Additional canaliz-
ing inputs can arise by chance if many noncanalized outputs
happen to have an equal value.

For the distribution of canalizing functions we have the
bias map

g�b� = �p3 − p2 + 2p1p2 − 2p1p3�b + p2 − p1p2 + p1p3.

�8�

From this linear bias map we get a unique fixed point

b* =
p2 − p1p2 + p1p3

1 + p2 − p3 + 2p1p3 − 2p1p2
.

We get �� by differentiating g�b� as

�� = 2p1p2 − 2p1p3 − p2 + p3

and � as

� = ��pk� − 1�2p3�1 − p3���1 − 2p1�b* + p1� + p2 + p3 − 2p2p3.

�9�

Proofs of these results are in the Appendix. In particular, we
have �= p3 if all the functions in the distribution are 0→0
canalizing �p1=0, p2=0� and �=1− p3 if all the functions are
1→1 canalizing �p1=1, p2=1�. In other words, networks
constructed with these two function distributions are stable
�or critical if all the functions are identity functions�. Note

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
t

ρ t+
1

a)

b)

FIG. 2. Derrida maps calculated numerically �dashed lines� and
analytically �solid lines�. �a� The network has random functions
with p=0.5 and constant in-degree 2. �b� The network has random
functions with p=0.5. Half of the nodes are constant and the other
half have four inputs.
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that in these two cases the order parameter does not depend
on the the average in-degree. Figure 3 shows a phase transi-
tion diagram for the distribution of canalizing functions
when �pk�=3.1, p3=0.5, and when p1 and p2 are varied. The
chaotic regime extends when the average in-degree gets
higher and vice versa. Changing p3 affects the position of the
chaotic regime.

The Derrida maps for the distribution of canalizing func-
tions are

h1�	� = �
k=1

�

pk	p3�1 − p3���1 − 	� − �1 − 	�k�

+ �p3 + p2 − 2p2p3�	
 , �10�

h2�	� = �
k=1

�

pk�
i=1

k

E
f�Fk

��i�	i�1 − 	�k−i, �11�

where

E
f�Fk

��i� = k − 1

i
�2p3�1 − p3���1 − 2p1�b* + p1� + k − 1

i − 1
�


�p2 + p3 − 2p2p3� �12�

and

h3�	� = �
k=1

�

pk�2p3�1 − p3�p1�1 − 2b*� + b* −
1

2
	�


�1 − �1 − 	�k−1� + �p3 + p2 − 2p2p3�	� . �13�

Proofs of these results are in the Appendix. We confirmed the
applicability of the results obtained with annealed approxi-
mation by performing numerical simulations on quenched
Boolean networks. We generated Boolean networks with a
canalizing function distribution �p1=0, p2=1, p3=0.5, N

=500, and constant in-degree K=4�. For the Derrida map
h1�	� we choose a random state and flip a proportion of
nodes 	. Then, we run the nonperturbed and perturbed net-
works for one time step and calculate the average Hamming
distance between the resulting states. For the Derrida map
h2�	� we first run the network until we reach an attractor and
then proceed as for h1�	�. The Derrida map h3�	� is calcu-
lated similarly to h2�	�, but we only perform perturbations
that lead to a state with the same number of ones as in the
original state. The theoretical and numerical results are pre-
sented in Fig. 4. In addition, we numerically calculated the
fixed point 	* for the same function distribution by running
two annealed networks in parallel. The numerical estimate is
given by a star on the diagonal line in Fig. 4. We note that
the Derrida maps are all different but not very far from each
other in this test case. The fixed point 	* is correct only for
the Derrida map h3�	�.

The data set provided by Harris et al. �10,23� consists of
139 regulatory functions compiled and interpreted from vari-
ous biological publications. These data can be used as an
experimental distribution of regulatory functions. By directly
using the methods presented, we obtain b*=0.017, ��
=0.14, and �=0.18 for the function distribution in question.
These results imply that the Boolean networks constructed
using these functions are very stable and the proportion of
active nodes is very low. The Derrida maps are shown in Fig.
5. It can be seen that h1 is in significant disagreement with h2
and h3. It is therefore important to consider the assumptions
implicitly made when interpreting network dynamics with
Derrida maps. These results suggest that gene regulatory net-
works are rather stable. However, the regulatory functions
provided by Harris et al. should not be considered to consti-
tute a truly realistic function distribution of regulatory func-
tions. In addition, any results obtained with the random to-
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FIG. 3. �Color online� A phase transition diagram for canalizing
functions when �pk�=3.1 and p3=0.5. p1 and p2 are varied.
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FIG. 4. Derrida maps h1�	�, h2�	�, and h3�	� calculated numeri-
cally �dashed lines� and analytically �solid lines� for canalizing
functions �p1=0, p2=1, p3=0.5, and constant in-degree K=4�. The
numerical estimate for the fixed point 	* is given by a star on the
diagonal line.
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pology assumption are only approximations until more
accurate descriptions for the topology are found.

V. CONCLUSIONS

We have studied the annealed approximation in Boolean
networks in order to present a common framework for the
approaches given in the literature. Three different Derrida
maps previously used can be derived from a common source,
the four-state model. The most important insight gained from
this study is that none of the Derrida maps can give an an-
swer to all the questions that are of interest in the annealed
model.

The limitations of the Derrida map h1 are widely known.
Its predictions fail most apparently when networks are con-
structed with functions that show forcing behavior—i.e.,
tend to drive most of the nodes to the same fixed value. The
proportion of nodes that have the value 1 in this forced state
is called the fixed point of the state bias. In this paper, we
point out that the Derrida map h2, which takes the forcing
behavior into account, fails to correctly predict the fixed
point of the perturbation size in the annealed network. In
contrast, the Derrida map h3 can be used to find the correct
fixed point of the perturbation size. However, the use of the
Derrida map h3 can be limited because it might not be de-
fined for large perturbation sizes at all.

The four-state model serves as a common basis for all the
Derrida maps and can also be seen as a general way of for-
mulating the annealed approximation. The fixed points of the
iterative equations can be solved numerically for any func-
tion distribution under study or analytically for many inter-
esting cases. For future studies with desired function distri-
butions we suggest using the four-state model because it

gives a more comprehensive dynamical analysis than any
Derrida map variant.

Real genetic regulatory networks are most likely not well
approximated by a network with random topology. Thus, the
predictions given by the annealed model should not be ex-
pected to yield accurate predictions of the dynamical prop-
erties of cells. However, annealed dynamics can give an in-
sight into quenched Boolean networks with random
topology. Since random topology can be viewed as a null
hypothesis of the network structure, the results of the an-
nealed model can serve as a reference point for future stud-
ies. The results can be compared to results obtained with
models that more accurately describe the local structures and
modularity of biological networks. The development of
probabilistic approximation methods to be used with topo-
logically realistic networks remains a topic of further re-
search.
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APPENDIX: PROOFS FOR THE RESULTS

Proof of Eq. �1�:

���b� = �C�b� − �I�b�

= E
f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x � ei� − 2xif�x � ei� + 2xif�x�

− f�x��P�x�b�� ,

where we can sum two of the terms with a change of variable
and the others directly:

�
i=1

Kf

�
x�	0,1
Kf

f�x � ei�P�x�b�

= �
x�	0,1
Kf

f�x��
i=1

Kf

P�x � ei�b�

= �
x�	0,1
Kf

f�x�� �Kf − �x��b
1 − b

+
�x��1 − b�

b
�P�x�b� ,

�
i=1

Kf

�
x�	0,1
Kf

xif�x � ei�P�x�b�

= �
x�	0,1
Kf

f�x��
i=1

Kf

�1 − xi�P�x � ei�b�

= �
x�	0,1
Kf

f�x�
�Kf − �x��b

1 − b
P�x�b� ,

FIG. 5. Derrida maps for regulatory functions provided by Har-
ris et al. in �10�. h3 is only defined for a small range of values close
to the origin due to small b*.
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�
i=1

Kf

�
x�	0,1
Kf

xif�x�P�x�b� = �
x�	0,1
Kf

f�x��x�P�x�b� ,

and

�
i=1

Kf

�
x�	0,1
Kf

f�x�P�x�b� = �
x�	0,1
Kf

f�x�KfP�x�b� .

Hence we obtain the result

���b� = E
f�F
� �

x�	0,1
Kf

f�x�
�x� − Kfb

b�1 − b�
P�x�b�� = g��b� .

Proof of Eq. �2�: Let

Phij = 	�x,y��x � 	0,1
Kf,y � 	0,1
Kf,�1 − x�T�y�

= h,xT�1 − y� = i,xTy = j


and

Pmn = 	�x,y��x � 	0,1
Kf,y � 	0,1
Kf, �x � y� = m, �x� = n
;

then, by changing the summation variables from h, i, and j to
m and n we obtain

h2�	� = E
f�F
��

h=0

Kf

�
i=0

Kf

�
j=0

Kf

�1 − b* + b*	 − 	�Kf−h−i−j�b* − b*	� j�	 − b*	�h�b*	�i �
�x,y��Phij

f�x� � f�y��
= E

f�F
��1 − 	�Kf�1 − b*�Kf�

h=0

Kf

�
i=0

Kf

�
j=0

Kf  	

1 − 	
�h b*	

�1 − b*��1 − 	��
i b*

1 − b*� j

�
�x,y��Phij

f�x� � f�y��
= E

f�F
��1 − 	�Kf�1 − b*�Kf�

h=0

Kf

�
i=0

Kf

�
j=0

Kf  	

1 − 	
�h+i b*

1 − b*�i+j

�
�x,y��Phij

f�x� � f�y��
= E

f�F
��1 − 	�Kf�1 − b*�Kf �

m=0

Kf

�
n=0

Kf  	

1 − 	
�m b*

1 − b*�n

�
�x,y��Pmn

f�x� � f�y��
= E

f�F� �
y�	0,1
Kf

�
x�	0,1
Kf

�f�x� � f�y��b*�x��1 − b*�Kf−�x�	�x�y��1 − 	�Kf−�x�y��
= E

f�F
��

k=1

Kf

�
y�Pk

�
x�	0,1
Kf

�f�x� � f�x � y��b*�x��1 − b*�Kf−�x�	k�1 − 	�Kf−k�
= E

f�F
��

k=1

Kf

�k	
k�1 − 	�Kf−k� .

Proof of Eq. �3�: From b*=0 we get

�
x�	0,1
Kf

f�x�P�x�0� = 0 ⇒ f�0� = 0.

Therefore,

�k = �
y�Pk

�
x�	0,1
Kf

�f�x� � f�x � y��P�x�0� = �
y�Pk

f�y�

and

h2�	� = E
f�F
��

k=1

Kf

�
y�Pk

f�y�	k�1 − 	�Kf−k�
= E

f�F� �
x�	0,1
Kf

f�x�	�x��1 − 	�Kf−�x�� = g�	� .

Proof of Eq. �4�: We note that after differentiating h1��0�
all the terms with �x � y� larger than 1 will go to zero. Thus,

h1��0� = E
f�F� �

x�	0,1
Kf

�
y�	0,1
Kf

�x�y�=1

�f�x� � f�y��1

2
�Kf�

= E
f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��1

2
�Kf� = �1

2
� .

Proof of Eq. �5�: By differentiating Eq. �2� we obtain

h2��	� = E
f�F
��

k=1

Kf

�k�k	k−1�1 − 	�Kf−k − �Kf − k�	k�1

− 	�Kf−k−1�� .

When we set 	=0 in this formula we note that all the terms
except that corresponding to k=1 will go to zero. Hence
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h2��0� = E
f�F

��1� = � .

By differentiating and splitting the resulting summations into two parts we get

h3��0� =
1

2
E

f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��bxT�x�ei��1 − b��1 − x�T�1−x�ei��
=

1

2
E

f�F��i=1

Kf � �
x�	0,1
Kf

xi=0

�f�x� � f�x � ei��b�x��1 − b�Kf−�x�−1 + �
x�	0,1
Kf

xi=1

�f�x� � f�x � ei��b�x�−1�1 − b�Kf−�x���
=

1

2
E

f�F��i=1

Kf � �
x�	0,1
Kf

xi=0

�f�x� � f�x � ei��b�x��1 − b�Kf−�x�−1 + �
x�	0,1
Kf

xi=0

�f�x � ei� � f�x��b�x��1 − b�Kf−�x�−1��
= E

f�F� 1

1 − b
�
i=1

Kf

�
x�	0,1
Kf

xi=0

�f�x� � f�x � ei��b�x��1 − b�Kf−�x��
= E

f�F��i=1

Kf � �
x�	0,1
Kf

xi=0

�f�x� � f�x � ei��b�x��1 − b�Kf−�x� + �
x�	0,1
Kf

xi=0

�f�x � ei� � f�x��b�x�+1�1 − b�Kf−�x�−1��
= E

f�F��i=1

Kf � �
x�	0,1
Kf

xi=0

�f�x� � f�x � ei��b�x��1 − b�Kf−�x� + �
x�	0,1
Kf

xi=1

�f�x� � f�x � ei��b�x��1 − b�Kf−�x���
= E

f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��b�x��1 − b�Kf−�x�� = � .

Here it is helpful to note that perturbing a single, ith bit, of state x will either increase or decrease �x� by one depending on the
value xi.

Proof of Eq. �6�:

g�b� = E
f�F� �

x�	0,1
Kf

f�x�P�x�b�� = �
k=1

�

pk �
x�	0,1
k

E
f�Fk

�f�x��P�x�b� = p�
k=1

�

pk �
x�	0,1
k

P�x�b� = p .

Both summations will give one as a result since they are summations of probabilities over all the possible outcomes.
Proof of Eq. �7�:

��b� = E
f�F
��

i=1

Kf

�
x�	0,1
Kf

�f�x� � f�x � ei��P�x�b�� = �
k=1

�

pk�
i=1

k

�
x�	0,1
k

E
f�Fk

�f�x� � f�x � ei��P�x�b� = 2p�1

− p��
k=1

�

pk�
i=1

k

�
x�	0,1
k

P�x�b� = 2p�1 − p��pk� ,

where Ef�Fk
�f�x� � f�x � ei��=2p�1− p� for all x and i since the outputs of f are selected independently with bias p.

Proof of Eq. �7�: According to the binomial theorem we have

�
i=0

K K

i
�ai = �1 + a�K

and
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�
i=1

K K

i
�ai = �1 + a�K − 1.

Using these formulas we can obtain the three Derrida maps for random functions as follows.
Derrida map

h1�	�:

h1�	� = �
k=1

�

pk �
x�	0,1
k

�
i=1

k

�
y�Pi

E
f�Fk

�f�x� � f�x � y��1

2
	�i1

2
−

1

2
	�k−i

= 2p�1 − p��
k=1

�

pk1

2
−

1

2
	�k

�
x�	0,1
k

�
i=1

k k

i
��

1

2
	

1

2
−

1

2
	�

i

= 2p�1 − p��
k=1

�

pk1

2
−

1

2
	�k

2k�1 +
	

1 − 	
�k

− 1�
= 2p�1 − p��

k=1

�

pk�1 − �1 − 	�k� .

Derrida map h2�	�:

h2�	� = �
k=1

�

pk�
i=1

k

E
f�Fk

��i�	i�1 − 	�k−i

= 2p�1 − p��
k=1

�

pk�
i=1

k k

i
�	i�1 − 	�k−i

= 2p�1 − p��
k=1

�

pk�1 − 	�k�
i=1

k k

i
� 	

1 − 	
�i

= 2p�1 − p��
k=1

�

pk�1 − 	�k�1 −
	

1 − 	
�k

− 1�
= 2p�1 − p��

k=1

�

pk�1 − �1 − 	�k� .

Derrida map h3�	�:

h3�	� = �
k=1

�

pk �
x�	0,1
k

�
y�	0,1
k

x�y

E
f�Fk

�f�x� � f�y��1 − p −
1

2
	��1 − x�T�1−y�p −

1

2
	�xTy1

2
	��x�y�

= 2p�1 − p��
k=1

�

pk�
i=1

k

�
j=0

k−i k

i
�k − i

j
�1 − p −

1

2
	�k−i−jp −

1

2
	� j1

2
	�i

2i

= 2p�1 − p��
k=1

�

pk1 − p −
1

2
	�k

�
i=1

k k

i
�� 	

1 − p −
1

2
	�

i

�
j=0

k−i k − i

j
�� p −

1

2
	

1 − p −
1

2
	�

j

= 2p�1 − p��
k=1

�

pk1 − p −
1

2
	�k

�
i=1

k k

i
�� 	

1 − p −
1

2
	�

i�1 +

p −
1

2
	

1 − p −
1

2
	�

k−i
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= 2p�1 − p��
k=1

�

pk�1 − 	�k�
i=1

k k

i
� 	

1 − 	
�i

= 2p�1 − p��
k=1

�

pk�1 − 	�k�1 +
	

1 − 	
�k

− 1�
= 2p�1 − p��

k=1

�

pk�1 − �1 − 	�k� .

Proof of Equation �10�: We first note that

�
x�	0,1
K

x1=0

P�x�b� = �1 − b� �
x�	0,1
K−1

b�x��1 − b�K−1−�x� = 1 − b ,

where the latter sum can be seen to be equal to 1 since it is the sum of probabilities over all vectors in a distribution of
�K−1�-dimensional vectors and, similarly,

�
x�	0,1
K

x1=1

P�x�b� = b .

Without loss of generality we can assume that the first variable is the canalizing variable. Then,

g�b� = E
f�F� �

x�	0,1
Kf

f�x�P�x�b�� = �
k=1

�

pk �
x�	0,1
k

x1=0

E
f�Fk

�f�x��P�x�b� + �
k=1

�

pk �
x�	0,1
k

x1=1

E
f�Fk

�f�x��P�x�b�

= ��1 − p1�p2 + p1p3��
k=1

�

pk �
x�	0,1
k

x1=0

P�x�b� + �p1p2 + �1 − p1�p3��
k=1

�

pk �
x�	0,1
k

x1=1

P�x�b�

= ��1 − p1�p2 + p1p3��1 − b� + �p1p2 + �1 − p1�p3�b = �p3 − p2 + 2p1p2 − 2p1p3�b + p2 − p1p2 + p1p3.

Here, e.g., when x1=0, we have

E
f�Fk

�f�x�� = �1 − p1�p2 + p1p3,

where the first product is the probability that f has canalizing zero and is therefore canalized and the canalized value is 1, and
the second product is the probability that f is not canalized, i.e., the canalizing value is 1, and the function f obtains value 1
with probability p3. The another expected value can be obtained in a similar way.

Proof of Eqs. �10� and �13�: We solve first the general case of �k�b� for canalizing functions with constant in-degree K. We
first divide the sum of the definition into four parts,

E
f�FK

��k�b�� = E
f�FK

� �
x�	0,1
K

�
y�Pk

f�x� � f�x � y�P�x�b��
= �

x�	0,1
k

x1=0

� �
y�Pk

y1=1

E
f�FK

�f�x� � f�x � y�� + �
y�Pk

y1=0

E
f�FK

�f�x� � f�x � y���P�x�b�

+ �
x�	0,1
K

x1=1

� �
y�Pk

y1=1

E
f�FK

�f�x� � f�x � y�� + �
y�Pk

y1=0

E
f�FK

�f�x� � f�x � y���P�x�b� .

The expectations can be computed by taking all the cases where f�x� and f�x � y� differ and adding up their probabilities that
can be computed from the probabilities that functions have specific canalizing and canalized values and the bias p3. In the first
case, for example, there are then � K−1

k−1
� ways to choose the k−1 bits of y that are not fixed by condition y1=1. In this way, the

inner sum can be computed. We obtain
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E
f�FK

��k�b�� = �
x�	0,1
K

x1=0

�K − 1

k − 1
���1 − p1��1 − p2�p3 + �1 − p1�p2�1 − p3� + p1�1 − p2�p3 + p1�1 − p2�p3 + p1p2�1 − p3�� + K − 1

k
�


�p1�1 − p2�2p3�1 − p3� + p1p22p3�1 − p3���P�x�b� + �
x�	0,1
K

x1=1

�K − 1

k − 1
���1 − p1��1 − p2�p3 + �1 − p1�p2�1 − p3�

+ p1�1 − p2�p3 + p1�1 − p2�p3 + p1p2�1 − p3�� + K − 1

k
���1 − p1��1 − p2�2p3�1 − p3� + �1 − p1�p22p3�1

− p3���P�x�b�

= K − 1

k
�2p3�1 − p3���1 − 2p1�b + p1� + K − 1

k − 1
��p2 + p3 − 2p2p3� .

This proves Eq. �13� and the result for ��b� in Eq. �10� follows by considering the special case k=1 and taking the expectation
with respect to a distribution of in-degrees.

Proof of Eq. �12�:

h1�	� = E
f�F
� �

x�	0,1
Kf

�
y�	0,1
Kf

�f�x� � f�y��1

2
−

1

2
	�Kf−�x�y�1

2
	��x�y��

= �
k=1

�

pk �
x�	0,1
k:

x1=0

�
y�	0,1
k:

y1=0

E
f�Fk

�f�x� � f�y��1

2
−

1

2
	�k−�x�y�1

2
	��x�y�

+ 2�
k=1

�

pk �
x�	0,1
k

�
y�	0,1
k

x1�y1

E
f�Fk

�f�x� � f�y��


1

2
−

1

2
	�k−�x�y�1

2
	��x�y�

+ �
k=1

�

pk �
x�	0,1
k:

x1=1

�
y�	0,1
k:

y1=1

E
f�Fk

�f�x� � f�y��1

2
−

1

2
	�k−�x�y�1

2
	��x�y�

= �
k=1

�

pk	p3�1 − p3���1 − 	� − �1 − 	�k� + �p3 + p2 − 2p2p3�	
 ,

since when x1�y1,

E
f�Fk

�f�x� � f�y�� = p3 + p2 − 2p2p3,

and when x1=y1=0, x�y,

E
f�Fk

�f�x� � f�y�� = 2p3�1 − p3�p1,

and when x1=y1=1, x�y,

E
f�Fk

�f�x� � f�y�� = 2p3�1 − p3��1 − p1� ,

and

�
x�	0,1
k

�
y�	0,1
k

x1=y1,x�y

1

2
−

1

2
	�k−�x�y�1

2
	��x�y�

= 1

2
−

1

2
	�k

�
x�	0,1
k−1

�
i=1

k−1 k − 1

i
��

1

2
	

1

2
−

1

2
	�

i

= 1

2
−

1

2
	�k

2k−1�1 +
	

1 − 	
�k−1

− 1�
=

1

2
��1 − 	� − �1 − 	�k� ,

and
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�
x�	0,1
k

�
y�	0,1
k

x1�y1

1

2
−

1

2
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1 − 	
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=
1

2
	 .

Proof of Eq. �12�: By noting that we can apply linearity of expectation we obtain

h2�	� = E
f�F
��

i=1

Kf

�i	
i�1 − 	�Kf−i� = �

k=1

�

pk�
i=1

k

E
f�Fk

��i�	i�1 − 	�k−i.

Proof of Eq. �13�: Utilizing the expected values mentioned in the proof of Eq. �11� we have

h3�	� = �
k=1

�

pk �
x�	0,1
k

�
y�	0,1
k

E
f�Fk

�f�x� � f�y��1 − b* −
1

2
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1

2
	�xTy1

2
	��x�y�

= �
k=1

�

pk �
x�	0,1
k:

x1=0

�
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E
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1

2
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1

2
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2
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+ 2�
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�
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E
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	��x�y�
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�
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 E
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�f�x� � f�y��1 − b* −
1

2
	��1 − x�T�1−y�b* −

1

2
	�xTy1

2
	��x�y�

= �
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�
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1

2
	��

i=1
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�
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k−1−i k − 1

i
�k − 1 − i

j
�2i1 − b* −

1

2
	�k−1−i−jb* −

1

2
	� j1

2
	�i

+ �
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�
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2
	��

i=0
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�
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1

2
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1

2
	� j1

2
	�i
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�
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i=1

k−1

�
j=0

k−1−i k − 1

i
�k − 1 − i

j
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1

2
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1

2
	� j1

2
	�i

.

Using the binomial theorem we obtain

h3�	� = �
k=1

�

pk�2p3�1 − p3��p1�1 − 2b*� + b* −
1

2
	��1 − �1 − 	�k−1� + �p3 + p2 − 2p2p3�	� .
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